Alpha This is a work in progress and may change. Your feedback is very welcome.
  


7RNO

Non-classical MHC Class I molecule MR1 with peptide editor TAPBPR

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Mr1 with tapbpr

1. Beta 2 microglobulin
['B']
2. MR1
['A']
3. TAPBPR (Tapasin homologue)
['C']

Species


Locus / Allele group

Non-classical MHC Class I molecule

Publication

TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules.

McShan AC, Devlin CA, Papadaki GF, Sun Y, Green AI, Morozov GI, Burslem GM, Procko E, Sgourakis NG
Nat Chem Biol (2022) [doi:10.1038/s41589-022-01049-9]  [pubmed:35725941

Chaperones tapasin and transporter associated with antigen processing (TAP)-binding protein related (TAPBPR) associate with the major histocompatibility complex (MHC)-related protein 1 (MR1) to promote trafficking and cell surface expression. However, the binding mechanism and ligand dependency of MR1/chaperone interactions remain incompletely characterized. Here in vitro, biochemical and computational studies reveal that, unlike MHC-I, TAPBPR recognizes MR1 in a ligand-independent manner owing to the absence of major structural changes in the MR1 α2-1 helix between empty and ligand-loaded molecules. Structural characterization using paramagnetic nuclear magnetic resonance experiments combined with restrained molecular dynamics simulations reveals that TAPBPR engages conserved surfaces on MR1 to induce similar adaptations to those seen in MHC-I/TAPBPR co-crystal structures. Finally, nuclear magnetic resonance relaxation dispersion experiments using 19F-labeled diclofenac show that TAPBPR can affect the exchange kinetics of noncovalent metabolites with the MR1 groove, serving as a catalyst. Our results support a role of chaperones in stabilizing nascent MR1 molecules to enable loading of endogenous or exogenous cargo.

Structure deposition and release

Deposited: 2021-07-29
Released: 2022-05-11
Revised: 2022-08-10

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRPPKIQVYSRHPPEDGKPNYLNCYVYGFHPPQIEIDLLKNGEKIKSEQSDLSFSKDW
        70        80        90
SFYLLSHAEFTPNSKDQYSCRVKHVTLEQPRIVKWDRDL

2. MR1
MR1
        10        20        30        40        50        60
MRTHSLRYFRLGVSDPIHGVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHW
        70        80        90       100       110       120
ERYTQLLRGWQQMFKVELKRLQRHYNHSGSHTYQRMIGCELLEDGSTTGFLQYAYDGQDF
       130       140       150       160       170       180
LIFNKDTLSWLAVDNVAHTIKQAWEANQHELLYQKNWLEEECIAWLKRFLEYGKDTLQRT
       190       200       210       220       230       240
EPPKVRVNHKETFPGITTLYCRAYGFYPPEISINWMKNGEEIFQDTDYGGILPSGDGTYQ
       250       260       270
TWVSVELDPQNGDIYSCHVEHGGVHMVLQGF

3. TAPBPR (Tapasin homologue)
TAPBPR (Tapasin homologue)
        10        20        30        40        50        60
KPHPAEGQWRAVDVVLDCFLVKDGAHRGAXASSEDRARASLVLKQVPVLDDGSLEDFTDF
        70        80        90       100       110       120
QGGTLAQDDPPIIFEASVDLVQIPQAEALLHADCSGKEVTCEISRYFLQMTETTVKTAAW
       130       140       150       160       170       180
FMANVQVSGGGPSISLVMKTPRVAKNEVLWHPTLNLPLSPQGTVRTAVEFQVMTQTQSLS
       190       200       210       220       230       240
FLLGSSASLDCGFSMAPGLDLISVEWRLQHKGRGQLVYSWTAGQGQAVRKGATLEPAQLG
       250       260       270       280       290       300
MARDASLTLPGLTIQDEGTYICQITTSLYRAQQIIQLNIQASPKVRLSLANEALLPTLIC
       310       320       330       340       350       360
DIAGYYPLDVVVTWTREELGGSPAQVSGASFSSLRQSVAGTYSISSSLTAEPGSAGATYT
       370       380       390
CQVTHISLEEPLGASTQVVPPERRLEGGLEVLFQGP


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 7RNO assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 7RNO assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 7RNO assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/7rno

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes