Non-classical MHC Class I molecule MR1 with peptide editor TAPBPR
Data provenance
Information sections
Complex type
Species
Locus / Allele group
TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules.
Chaperones tapasin and transporter associated with antigen processing (TAP)-binding protein related (TAPBPR) associate with the major histocompatibility complex (MHC)-related protein 1 (MR1) to promote trafficking and cell surface expression. However, the binding mechanism and ligand dependency of MR1/chaperone interactions remain incompletely characterized. Here in vitro, biochemical and computational studies reveal that, unlike MHC-I, TAPBPR recognizes MR1 in a ligand-independent manner owing to the absence of major structural changes in the MR1 α2-1 helix between empty and ligand-loaded molecules. Structural characterization using paramagnetic nuclear magnetic resonance experiments combined with restrained molecular dynamics simulations reveals that TAPBPR engages conserved surfaces on MR1 to induce similar adaptations to those seen in MHC-I/TAPBPR co-crystal structures. Finally, nuclear magnetic resonance relaxation dispersion experiments using 19F-labeled diclofenac show that TAPBPR can affect the exchange kinetics of noncovalent metabolites with the MR1 groove, serving as a catalyst. Our results support a role of chaperones in stabilizing nascent MR1 molecules to enable loading of endogenous or exogenous cargo.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRPPKIQVYSRHPPEDGKPNYLNCYVYGFHPPQIEIDLLKNGEKIKSEQSDLSFSKDW 70 80 90 SFYLLSHAEFTPNSKDQYSCRVKHVTLEQPRIVKWDRDL |
2. MR1
MR1
|
10 20 30 40 50 60
MRTHSLRYFRLGVSDPIHGVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHW 70 80 90 100 110 120 ERYTQLLRGWQQMFKVELKRLQRHYNHSGSHTYQRMIGCELLEDGSTTGFLQYAYDGQDF 130 140 150 160 170 180 LIFNKDTLSWLAVDNVAHTIKQAWEANQHELLYQKNWLEEECIAWLKRFLEYGKDTLQRT 190 200 210 220 230 240 EPPKVRVNHKETFPGITTLYCRAYGFYPPEISINWMKNGEEIFQDTDYGGILPSGDGTYQ 250 260 270 TWVSVELDPQNGDIYSCHVEHGGVHMVLQGF |
3. TAPBPR (Tapasin homologue)
TAPBPR (Tapasin homologue)
|
10 20 30 40 50 60
KPHPAEGQWRAVDVVLDCFLVKDGAHRGAXASSEDRARASLVLKQVPVLDDGSLEDFTDF 70 80 90 100 110 120 QGGTLAQDDPPIIFEASVDLVQIPQAEALLHADCSGKEVTCEISRYFLQMTETTVKTAAW 130 140 150 160 170 180 FMANVQVSGGGPSISLVMKTPRVAKNEVLWHPTLNLPLSPQGTVRTAVEFQVMTQTQSLS 190 200 210 220 230 240 FLLGSSASLDCGFSMAPGLDLISVEWRLQHKGRGQLVYSWTAGQGQAVRKGATLEPAQLG 250 260 270 280 290 300 MARDASLTLPGLTIQDEGTYICQITTSLYRAQQIIQLNIQASPKVRLSLANEALLPTLIC 310 320 330 340 350 360 DIAGYYPLDVVVTWTREELGGSPAQVSGASFSSLRQSVAGTYSISSSLTAEPGSAGATYT 370 380 390 CQVTHISLEEPLGASTQVVPPERRLEGGLEVLFQGP |
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint

This work is licensed under a Creative Commons Attribution 4.0 International License.