HLA-A*02:01 binding "YLLMWITQV" at 2.64Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-A*02:01
YLLMWITQV
Species
Locus / Allele group
Class I Major Histocomapatibility Complex: the Trojan horse for secretion of amyloidogenic ��2-microglobulin.
To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N β2-microglobulin (β2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N β2m. Using biophysical and structural approaches, we show that the MHCI containing D76N β2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type β2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N β2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N β2m degradation within the cell. Accordingly, D76N β2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication



Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
TYR
TYR7
LYS66
THR163
TYR59
GLU63
MET5
TRP167
PHE33
TYR171
TYR159
|
P2
LEU
VAL67
PHE9
TYR99
TYR159
TYR7
HIS70
GLU63
LYS66
MET45
|
P3
LEU
TYR99
TYR159
HIS70
LYS66
HIS114
LEU156
|
P4
MET
LYS66
|
P5
TRP
GLN155
HIS70
|
P6
ILE
HIS70
ALA69
HIS74
THR73
ARG97
TYR99
|
P7
THR
THR73
ASP77
TRP147
VAL152
ARG97
|
P8
GLN
THR73
ASP77
TRP147
THR143
LYS146
VAL76
|
P9
VAL
TYR116
LEU81
TRP147
THR80
ASP77
TYR84
THR143
TYR123
LYS146
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


A Pocket
TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
|
B Pocket
ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
|
C Pocket
HIS70
THR73
HIS74
PHE9
ARG97
|
D Pocket
HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
|
E Pocket
HIS114
TRP147
VAL152
LEU156
ARG97
|
F Pocket
TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKNEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266] |
10 20 30 40 50 60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 70 80 90 100 110 120 DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG 130 140 150 160 170 180 KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ 190 200 210 220 230 240 RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWEP |
3. Peptide
|
YLLMWITQV
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Complete structures
Components
- 4L3C assembly 1
- 4L3C assembly 10
- 4L3C assembly 11
- 4L3C assembly 12
- 4L3C assembly 13
- 4L3C assembly 14
- 4L3C assembly 2
- 4L3C assembly 3
- 4L3C assembly 4
- 4L3C assembly 5
- 4L3C assembly 6
- 4L3C assembly 7
- 4L3C assembly 8
- 4L3C assembly 9
- 4L3C assembly 1
- 4L3C assembly 10
- 4L3C assembly 11
- 4L3C assembly 12
- 4L3C assembly 13
- 4L3C assembly 14
- 4L3C assembly 2
- 4L3C assembly 3
- 4L3C assembly 4
- 4L3C assembly 5
- 4L3C assembly 6
- 4L3C assembly 7
- 4L3C assembly 8
- 4L3C assembly 9
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint

This work is licensed under a Creative Commons Attribution 4.0 International License.